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Outline

ä Particle methods for plasma simulation (PIC)

ä State of the art algorithm: explicit approach

ä Status of implicit PIC: problems and limitations

ä Our approach: energy and charge-conserving implicit electrostatic PIC

ë Vlasov-Ampere vs. Vlasov-Poisson

ë Exact energy-conserving formulation

ë Exact charge-conserving mover

ë Momentum conservation error control: orbit adaptivity

ä Generalization to mapped (body �tted) meshes

ä Preconditioning: Moment-based acceleration

ä Generalization to electromagnetic PIC: energy-conserving Darwin model

ä Potential for heterogeneous computing: hybrid CPU-GPU implementation
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Introduction
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Particle-in-cell (PIC) methods for kinetic plasma simulation

∂t f + v · ∇ f +
F
m
· ∇v f =

(
∂ f
∂t

)
col

ä Ignoring collisions⇒ Lagrangian solution by the method of characteristics:

f (x, v, t) = f0

(
x−

∫ t

0
dtv, v− 1

m

∫ t

0
dtF
)

; x(t = 0) = x0 ; v(t = 0) = v0

ä PIC approach follows characteristics employing macroparticles (volumes in phase space)

f (x, v, t) = ∑p δ(x− xp)δ(v− vp)

ẋp = vp

v̇p =
qp

mp
(E + v× B)

∂tB +∇× E = 0

−µ0ε0∂tE +∇× B = µ0j

∇ · B = 0

∇ · E =
e(ni − ne)

ε0

δ(x− xp) −→ S(x− xp) ; Ep = ∑
i

EiS(xi − xp) ; ji = ∑
p

jpS(xi − xp)
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State-of-the-art classical PIC algorithm is explicit

ä Classical explicit PIC approach �leap-frogs� particle positions and velocities, solves for �elds after

position update:

ä Severe performance limitations:

ë ∆x < λDebye (�nite-grid instability: enforces a minimum spatial resolution)

ë ωpe∆t < 1 (CFL-type instability: enforces a minimum temporal resolution)

ë Ine�cient for long-time, large-scale integrations

ä In the presence of strong magnetic �elds, gyro-averaging the Vlasov-Maxwell model can signif-

icantly ameliorate these limitations, but there are other issues (e.g. not asymptotic preserving,

required order of expansion to capture some physical e�ects, treatment of nonlinear terms)

We focus on electrostatic PIC as a proof of principle
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What about implicit PIC?

ä Implicit PIC holds the promise of overcoming the di�culties and ine�ciencies of explicit methods

for long time-scale simulations

ä Exploration of implicit PIC started in the 1980s

ë Moment method [Mason, 1981; Brackbill, 1982]

ë Direct method [Friedman, Langdon, Cohen, 1981]

ä Early approaches used linearized, semi-implicit formulations:

ë Lack of nonlinear convergence

ë Inconsistencies between particles and moments

ë Inaccuracies! →Plasma self-heating/cooling [Cohen, 1989]

Our goal is to explore the viability of a nonlinearly converged, fully implicit PIC algorithm

What is the nature of the resulting fully-coupled algebraic system?

Is it practical to invert?

Luis Chacon, chacon@lanl.gov



Fully implicit electrostatic PIC
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Fully implicit PIC formulation

ä A fully implicit formulation couples particles and �elds non-trivially (integro-di�erential PDE):

f n+1− f n

∆t
+ v · ∇ f n+1 + f n

2
− q

m
∇Φn+1 + Φn

2
· ∇v

f n+1 + f n

2
= 0

∇2Φn+1 =
∫

dv f n+1(x, v, t)

ä In PIC, f n+1 is sampled by a large collection of particles in phase space, {x, v}n+1
p .

ë There are Np particles, each particle requiring 2× d equations (d→dimensions),

ë Field requires Ng equations, one per grid point.

ä If implemented naively, an impractically large algebraic system of equations results:

G({x, v}n+1
p , {Φn+1}g) = 0 → dim(G) = 2dNp + Ng � Ng

ë No current computing mainframe can a�ord the memory requirements

ë Algorithmic issues are showstoppers (e.g., how to precondition it?)

ä An alternative strategy exists: nonlinear elimination (particle enslavement)
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Particle enslavement (nonlinear elimination)

ä Full residual G({x, v}p, {Φ}g) = 0 is impractical to implement

ä Alternative: nonlinearly eliminate particle quantities so that they are not dependent

variables:

ë Formally, particle equations of motion are functionals of the electrostatic potential:

xn+1
p = xp[Φn+1] ; vn+1

p = vp[Φn+1]

G(xp
n+1, vp

n+1, Φn+1) = G(x[Φn+1], v[Φn+1], Φn+1) = G̃(Φn+1)

Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only!

ä JFNK storage requirements are dramatically decreased, making it tractable:

ë Solver storage requirements ∝ Ng, comparable to a �uid simulation

ë Particle quantities ⇒ auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration
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Jacobian-Free Newton-Krylov Methods

ä After spatial and temporal discretization ⇒ a large set of nonlinear equations: ~G(~xn+1) =~0

ä Converging nonlinear couplings requires iteration: Newton-Raphson method:

∂~G
∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk)

ä Jacobian linear systems result, which require a linear solver⇒ Krylov subspace methods (GMRES)

ë Only require matrix-vector products to proceed.

ë Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form Jacobian

matrix): (
∂~G
∂~x

)
k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

ë Krylov methods can be easily preconditioned: P−1
k ∼ J−1

k

JkP−1
k Pkδ~x = ~−Gk

We will explore suitable preconditioning strategies later in this talk.
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Field equation: Vlasov-Poisson vs. Vlasov-Ampere

ä Nonlinear elimination procedure leads to G(Φ) = 0 (or G(E) = 0)
ä Two formulations are possible:

Vlasov-Poisson (VP) Vlasov-Ampère (VA)

∂t f + v∂x f +
qE
m

∂v f = 0

∂xE =
ρ

ε0

E = −∂xΦ

∂t f + v∂x f +
qE
m

∂v f = 0

ε0∂tE + j = 〈j〉

Two systems are equivalent in continuum, but not in the discrete.

ä Conventionally used in explicit PIC.

ä Exact local charge conservation.

ä Exact global momentum conservation.

ä Unstable with orbit averaging in implicit

context [Cohen and Freis, 1982].

ä Exact local charge conservation.

ä Exact global energy conservation.

ä Suitable for orbit averaging.

ä Can be extended to electromagnetic sys-

tem.

ä We will show, however, that an equivalent energy-conserving VP formulation exists.
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Energy-conserving (EC) Vlasov-Ampère discretization

ä Fully implicit Crank-Nicolson time discretization:

ä C-N enforces energy conservation to numerical round-o�:

∑
p

mp

2
(vn+1

p + vn
p)(v

n+1
p − vn

p) = −∑
i

ε0
En+1

i − En
i

∆t
En+1

i + En
i

2
⇒ ∑

p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const

ä As a result, the formulation does not su�er from �nite-grid instabilities (normal mode analysis)

ë Unconstrained spatial resolution: ∆x ≮ λD !!

ä Energy conservation is only realized when particles and �elds are nonlinearly converged:

ë Requires a tight nonlinear tolerance
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Algorithmic implementation details

ä The nonlinear residual formulation G(En+1) based on Vlasov-Ampere formulation is as follows:

1. Input E (given by JFNK iterative method)

2. Move particles (i.e., �nd xp[E], vp[E] by solving equations of motion)

(a) Requires inner (local) nonlinear iteration: Picard (not sti�)

(b) Can be as complicated as we desire (substepping, adaptivity, etc)

3. Compute moments (current)

4. Form Vlasov-Ampere equation residual

5. return

ä Because particle move is performed within function evaluation, we have much freedom.

ä Rest of the talk will describe improvements in particle mover to ensure long-term accuracy

ë Particle substepping and orbit averaging (ensures orbit accuracy and preserves exact

energy conservation)

ë Exact charge conservation strategy (a new charge-conserving particle mover)

ë Orbit adaptivity (to improve momentum conservation)
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Particle orbit substepping

ä In applications of interest, �eld time-scale (∆t) and orbit time-scale (∆τ) can be well separated

ë Fields evolve slowly (dynamical time scale, ∆t)
ë Particle orbits may still undergo rapid change (∆τ � ∆t)

ä Particle orbits need to be resolved to avoid large orbit integration errors

Accurate orbit integration requires particle substepping!

ä Field does not change appreciably: time-averaged value over long time scale is su�cient

xν+1
p − xν

p

∆τ
= vν+1/2

p

vν+1
p − vν

p

∆τ
= ∑

i

En+1
i + En

i

2︸ ︷︷ ︸
slow

S(xi − xν+1/2
p )
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Energy conservation and orbit averaging

ä Particle substepping breaks energy conservation.

ä Energy conservation theorem can be recovered by orbit averaging Ampère's law:

ε0∂tE + j = 〈j〉 ,
1

∆t

∫ t+∆t

t
dτ[· · · ]⇒ ε0

En+1− En

∆t
+ j̄ =

〈
j̄
〉

ä Orbit-averaged current is found as:

j̄ =
1

∆t

∫ t+∆t

t
dτ j ≈ 1

∆t ∑
p

Nν

∑
ν=1

qpvpS(x− xp)∆τν

ä With these de�nitions, exact energy conservation is recovered:

∑
p

∑
ν

mp

2
(vν+1

p + vν
p)(v

ν+1
p − vν

p) = −∑
i

ε0
En+1− En

∆t
En+1

i + En
i

2

⇒ ∑
p

1
2

mpv2
p + ∑

i

1
2

ε0E2
i = const.
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Exact charge conservation: charge-conserving particle mover

ä Local charge conservation (enforced in the continuum by Gauss' law) is violated in discrete

Vlasov-Ampère formulation.

ä Local charge conservation is essential to ensure long-term accuracy of numerical algorithm

ä Exact charge conservation requires a particle mover that satis�es a discrete charge continuity

equation, ∂tρ +∇ · j = 0 [Buneman 1968, Morse and Nielson, 1971]

ë Standard strategy based on current redistribution when particle crosses boundary.

ë In our context, current redistribution breaks energy conservation. Need new strategy.

Here, charge conservation is enforced by stopping particles at cell boundaries.

ρi+1
2
= ∑p qp

Sm(x−x
i+1

2
)

∆x

ji = ∑p qpvp
Sm−1(x−xi)

∆x

S′m(x) = Sm−1(x+∆x
2 )−Sm−1(x−∆x

2 )

∆x


(m=1,2)
=⇒ [∂tρ +∇ · j = 0]

n+1
2

i+1
2
= 0
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Momentum conservation: adaptive orbit integrator

ä EC/CC PIC algorithm does not enforce momentum conservation exactly.

ë Controlling error in momentum conservation is crucial for long-term accuracy

ä Orbit integration errors can signi�cantly a�ect momentum conservation: particle tunneling

ä Adaptive orbit integration can be e�ective in suppressing particle

tunneling and thus improve momentum conservation

ä Approach: �nd ∆τ to control local truncation error. Second

order estimator gives:

∆τ ≤

√√√√12εr
mp

qp

∣∣∣∣dE
dx

∣∣∣∣−1

p

ä Electric �eld gradient is estimated from cell-based gradient:
∂E
∂x

∣∣
p ≈

Ei+1−Ei
∆x . Provides potential barrier!

ä Particle is stopped at cell boundaries to ensure charge conservation.
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Ion acoustic wave (IAW): accuracy impact of di�erent EC movers

1e-01

1e-03

1e-02

K
i

0 0.5 1 1.5 2

t (x1000)

4.96

4.94

4.98

K
e

0

0

∆
(t

o
ta

l 
e

n
e

rg
y
)

  
 t

o
ta

l 
m

o
m

e
n
tu

m

N
p
x
[(

m
v

th
)i
+

(m
v

th
)e

]

4e-10

-4e-10

4e-4

-4e-4

2e-4

-2e-4

a.

im,acc-cn,∆t=4
im,sub-cn,∆t=1
im,cn,∆t=0.25

im,cn,∆t=1

b.

c.

d.

Luis Chacon, chacon@lanl.gov



IAW: explicit vs. implicit (accuracy)

ä Compare large-time-step implicit IAW vs explicit at CFL

ä Found that explicit at CFL was not as accurate as implicit with ∆t� ∆tCFL!!!
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ä CFL time-step is an �average� quantity (based on thermal velocity), and thus may still introduce

inaccuracies in fast particles.
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IAW: e�ect on nonlinear tolerance

ä Exact energy conservation of implicit mover only holds for exact nonlinear solve

ä It is of interest to understand robustness of mover when employing �nite nonlinear tolerances
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Adaptive-CC mover is the most robust!
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Ion acoustic shock wave
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ä Propagating IAW with perturbation level ε = 0.4, with 4000 particles/cell.

ä Realistic mass ratio (mi/me = 2000).
ä Shock wave length scale∼Debye length.
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CPU gain potential of implicit PIC vs. explicit PIC

ä Back-of-the-envelope estimate of CPU gain:

CPU ∼
(

T
∆t

)(
L

∆x

)d

npCsolver ;
Cimp

Cex ∼ NFE
∆timp

∆τimp
;

CPUex

CPUimp
∼
(

∆ximp

∆xex

)d ∆τimp

∆tex

1
NFE

ä Using reasonable estimates:

∆τimp ∼ 0.1
∆ximp

vth

∆texp ∼ 0.1/ωpe

k∆ximp ∼ 0.2

∆xex ∼ λD

CPUex

CPUimp
∼ 1

(kλD)d+1

1
NFE
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Energy conserving implicit PIC on
mapped meshes
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Generalization of implicit PIC algorithm to mapped meshes

ä Implicit algorithm is most advantageous when resolution is coarse (∆x � λD).

ä However, some problems develop thin layers nonlinearly (e.g. IASW) ⇒spatial adaptivity.

ä Here, we explore spatial adaptivity via a map x(ξ).
ä Issues:

ë Presence of self-forces.

ë Particle deposition for charge conservation.

ë How should particles be pushed (logical space, physical space)?

ä Properties of our implementation:

ë We recover energy and charge conservation theorems.

ë Key to the approach is a hybrid particle push [Swift, 1996; Wang, 1999]:

I Position is updated in logical space (Cartesian-like)

I Velocity is updated in physical space (no inertial forces due to geometry).
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Formulation of equations in mapped geometry
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Charge conservation theorem in mapped geometry

ä Charge conservation equation in mapped geometry: ∂t(Jρ) + ∂α(J jα) = 0
ä Motivates following charge and current representations:

Jρ(ξ, t) =
1

∆ξ ∑
p

qpS(ξ − ξp(t))

J jα(ξ, t) =
1

∆ξ ∑
p

qpvp(t) · αpS(ξ − ξp(t))

ä Shape functions interpolate charge and current, not their densities!

ä Discrete charge conservation within a cell follows from:

∑
p

qp

∆ξ

[
Sm(ξi − ξn+1

p )− Sm(ξi − ξn
p)

∆t
+

ξn+1
p − ξn

p

∆t
Sm−1(ξi+1/2− ξn+1/2

p )− Sm−1(ξi−1/2− ξn+1/2
p )

∆ξ

]
= 0,

which is identical to Cartesian geometry form, and is an identity for m = 1, 2.
ä Global charge conservation requires particles to land at cell boundaries, as in Cartesian case.
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Discretization of PIC equations in mapped geometry
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Energy conservation theorem in mapped geometry

ä Start from equation of motion:

mp

2

[
(vn+1

p )2− (vn
p)

2
]
= qpEn+1/2

α,p αn+1/2
p · vn+1/2

p ∆t.

ä Summing over all particles:

Kn+1− Kn = ∆t ∑
i

∆ξ(J jα,n+1/2En+1/2
α )i+1/2 = −ε0 ∑

i
∆ξ Ji+1/2

(
(En+1

i+1/2)
2

2
−

(En
i+1/2)

2

2

)
.

ä As a result: (
∑

p

1
2

mpv2
p +

ε0

2 ∑
i

∆ξ Ji+1/2E2
i+1/2

)∣∣∣∣∣
n+1

n

= 0.
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Ion acoustic shock wave test
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Fluid preconditioning for
fully implicit electrostatic PIC
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Moment-based acceleration of fully kinetic simulations

ä Particle elimination formulates nonlinear residual in terms of �elds/moments: G(E)
ä Preconditioner in JFNK needs to provide �eld/moment update: δE ≈ −P−1G.
ä Premise of acceleration: obtain δE from a �uid model, closed with current particle distribution

∂tnα = −∇ · Γα

mα

[
∂tΓα +∇ · (

1
nα

ΓαΓα)

]
= qαnαE +∇ ·

(
nα

(
Πα

nα

)
p

)
ε0∂tE = ∑

α

qαΓα

ä Linearize:

δnα

∆t
= −∇ · δΓα

mα

[
δΓα

∆t
+∇ · δ

(
1
nα

ΓαΓα

)]
≈ qα(δnα E + nαδE) +∇ ·

 (
Πα

nα

)
p

δnα


ε0 δE = ∆t

[
∑

α

qαδΓα − G(E)

]

ä δE can be obtained from E, G(E), and particle closure
(

Πα
nα

)
p
.
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Preconditioner performance with ∆t
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Preconditioner performance with ∆x
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Preconditioner performance: CPU scaling

CPUex

CPUimp
∼ 1

(kλD)d+1
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Generalization to electromagnetic PIC:
Darwin (non-radiative) formulation
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Darwin approximation to Maxwell equations: motivation

ä To analytically remove light-wave in non-relativistic plasma simulations while preserving charge

separation e�ects

ä If one keeps light wave with exact energy conservation in non-relativistic setting, one gets

enhanced numerical noise due to numerical Cherenkov radiation

Figure 1: Fourier phase space for exactly energy conserving PIC (left)

and dissipative PIC (right) [Markidis and Lapenta, JCP 2011].
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Darwin model (potential form)

ä We consider potentials φ, A in the Coulomb gauge (∇ ·A = 0) such that:

B = ∇×A.

E = −∇φ− ∂tA.

ä Darwin model projects out the speed of light without enforcing quasineutrality (i.e., allowing for

charge separation e�ects).

∇2χ = ∇ · j,

−∇2A = µ0 [j−∇χ] ,

χ = ε0∂tφ.

ä In 1D:

ε0∂tEx + jx = 〈jx〉 ,

1
µ0

∂2
x Ay + jy =

〈
jy
〉

,

1
µ0

∂2
x Az + jz = 〈jz〉 .

En+1/2
y,i = −

An+1
y,i − An

y,i

∆t
,

En+1/2
z,i = −

An+1
z,i − An

z,i

∆t
.
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Energy conserving discrete 1D Darwin model

ä Field equations:

ε0
En+1

x,i+1/2− En
x,i+1/2

∆t
+ j̄n+1/2

x,i+1/2 = 〈jx〉 ,

1
µ0

∂2
x

An+1
y + An

y

2

∣∣∣∣∣
i

+ j̄n+1/2
y,i =

〈
jy
〉

,

1
µ0

∂2
x

An+1
z + An

z

2

∣∣∣∣
i
+ j̄n+1/2

z,i = 〈jz〉

E  , A  , j
x      x     x

E  , A  , j
y      y     y

E  , A  , j
z      z     z

B  , B
y      z

ρ

ä Current gather (with orbit averaging):

j̄n+1/2
x,i+1/2 =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,x Sm(xν+1/2

p − xi+1/2)∆τν,

j̄n+1/2
y,i =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,y Sl(xν+1/2

p − xi)∆τν,

j̄n+1/2
z,i =

1
∆t∆x ∑

p
∑

ν

qpvν+1/2
p,z Sl(xν+1/2

p − xi)∆τν,
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Implicit particle mover

ä Subcycled particle equations of motion:

xν+1
p − xν

p

∆τν
= vν+1/2

x ,

vν+1
p − vν

p

∆τν
=

qp

mp

(
Eν+1/2

p (xν+1/2
p ) + vν+1/2

p × Bν+1/2
p (xν+1/2

p )
)

.

ä This in an implicit nonlinear system. We invert it locally using Picard.

ä Following Markidis and Lapenta [JCP 2011], we use an analytical inversion of the velocity equation

v̂p = vν
p + αEν+1/2

p , α =
qp∆τν

mp2

vν+1/2
p =

v̂p + α
[
v̂p × Bν+1/2

p + α(v̂p · Bν+1/2
p )Bν+1/2

p

]
1 +

(
αBp

)2 .

Final particle position and velocity are found from:

xν+1
p = xν

p + ∆τνvν+1/2
x,p ,

vν+1
p = 2vν+1/2

p − vν
p.
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Field scatter to particles

ä Electric �eld scatter (with orbit averaging):

Eν+1/2
x,p = ∑

i

En+1
x,i+1/2 + En

x,i+1/2

2
Sm(xν+1/2

p − xi+1/2),

Eν+1/2
y,p = −∑

i

An+1
y,i − An

y,i

∆t
Sl(xν+1/2

p − xi),

Eν+1/2
z,p = −∑

i

An+1
z,i − An

z,i

∆t
Sl(xν+1/2

p − xi).

ä Magnetic �eld scatter: conservation of canonical momenta in ignorable directions

ṗy = mpv̇p,y + qpȦp,y = 0 , ṗz = mpv̇p,z + qpȦp,z = 0

This can be enforced exactly along particle orbits, and yields:

Bν+1/2
y,p = −∑

i

Aν+1/2
z,i+1 − Aν+1/2

z,i

∆x
Sl−1(xi+1/2− xν+1/2

p )− ∑
i

∆Aν
z,i−1− 2∆Aν

z,i + ∆Aν
z,i+1

8
(xν+1

p − xν
p) ,

Bν+1/2
z,p = ∑

i

Aν+1/2
y,i+1 − Aν+1/2

y,i

∆x
Sl−1(xi+1/2− xν+1/2

p ) + ∑
i

∆Aν
y,i−1− 2∆Aν

y,i + ∆Aν
y,i+1

8
(xν+1

p − xν
p) .
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Veri�cation: Electron Weibel instability

ä Isotropic ions, bi-Maxwellian electrons

mi/me = 1836, Te⊥/Te‖ = 16, Ne,i=128,000, L = 2πc/ωpe, Ng=32.
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Veri�cation: Ion Weibel instability

ä Isotropic electrons, bi-Maxwellian ions

mi/me = 128, Ne,i=128,000, L = 0.88πc/ωpi, Ng=32

Figure 2:
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Hybrid CPU-GPU implementation
(electrostatic PIC)
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Implementation of ACC particle mover on GPU architectures1

ä Particle orbits are independent of each other ⇒ PIC algorithms are naturally data parallel.

ä Potential performance killers for our implicit PIC ACC particle mover:

ë Particle motion is self-adaptive (orbit accuracy) ⇒workload imbalances.

ë Particles stop at cell boundaries (charge conservation) ⇒dynamic control �ows.

1Chen, Chacon, Barnes, JCP, 2012
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Algorithm optimization on GPU: roo�ine model2

2S. Williams, A. Waterman, and D. Patterson, Comm. ACM, 52 (94) 2009
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Optimization of ACC implicit particle mover

ä Computationally intensive �> compute-bounded (vs. explicit schemes, typically memory-bounded)

ä While loop introduces control �ow latencies and branch divergences.

ä Requires expensive operations (sqrt, division), atomicAdd (for moment accumulation)
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Performance results on GPU (single precision)
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Sensitivity of GPU performance and e�ciency
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ä All operations including �oating, integer, and special functions are counted.

ä Varied E, ∆t, Np to test performance sensitivity

ë Performance is most sensitive to ∆t: more e�cient for large ∆t!
ä 300 to 400 GOps/s (20-30% e�ciency of GPU peak) are obtained for large time steps, strong

�elds and many particles.
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GPU scaling with number of threads

ä Hardware limit is 512 threads (=32 cores/SMx16 SM/GPU) running concurrently;

ä Large number of threads (�512) are useful to hide latencies.
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CPU-GPU speedup

ä Straightforward GPU implementation accelerates ∼100 times;

ä Optimizations have larger e�ects on GPU; not all optimizations introduced are e�ective on CPU.

ä GPU-CPU speedup ∼ 200− 300, depending on algorithm (VA, VP)
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Ion acoustic wave: accuracy and performance comparison
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Summary and conclusions

ä We have demonstrated, for the �rst time, a fully implicit, fully nonlinear electrostatic PIC

formulation that features:

ë Exact charge conservation (via a novel particle mover strategy).

ë Exact energy conservation (no particle self-heating or self-cooling).

ë Adaptive particle orbit integrator to control errors in momentum conservation.

ä The approach has been shown to be free of CFL and �nite-grid numerical instabilities.

ä As a result, the method is able to take time steps many times larger than explicit, and resolutions

many times coarser.

ä Central to our implementation is the concept of particle enslavement.

ä We have generalized formulation to use spatial adaptivity via mapped coordinates.

ä The method has much potential for e�ciency gains vs. explicit in long-time-scale applications,

with the CPU speedup scaling as (kλD)−(d+1)/NFE.

ë Minimize the number of nonlinear function evaluations NFE for given ∆t, ∆x ⇒ precondi-

tioning!

ë We have formulated and implemented a very e�cient moment-based preconditioner.

ä We have ported the algorithm to GPU architectures

ä We have generalized the algorithm to non-radiative electromagnetic regimes (Darwin model),

where, in addition to charge and energy, we also conserve canonical momenta.
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